- 欢迎访问起航教学!
北师大版九年级数学上册《花边有多宽》教案二
12-14 18:41:36 分类:初三数学教案 浏览次数: 670次
标签:九年级数学教案,九年级数学下册教案,http://www.qihang56.com
北师大版九年级数学上册《花边有多宽》教案二,
教学过程(本文来自优秀教育资源网淘.教.案.网)
I.创设现实情景,引入新课
[师]前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,大家来回忆一下.
[生甲]把只含有一个未知数并且都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的整式方程叫做一元二次方程.
[生乙]一元二次方程的一般形式是ax2+bx+c=O(a、b、c为常数,a≠0).
其中ax2称为二次项,bx称为一次项,c为常数项;a和b分别称为二次项系数和一次项系数.
[师]很好,现在我们来看上节课的问题:花边有多宽.(出示投影片§ 2.1.2 A)
一块四周镶有宽度相等的花边的地毯,如下图所示,它的长为8 m,宽为5 m,如果地毯中央长方形图案的面积为18 m2,那么花边有多宽?
[师生共析]我们设花边的宽度为x,m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m.根据题意,就得到方程
(8-2x)(5-2x)=18.
[师]大家想一下:能求出这个方程中的未知数x吗?
……
[师]这节课我们继续来探讨“花边有多宽”.
Ⅱ.讲授新课
[师]要求地毯的花边有多宽,由前面我们知道:地毯花边的宽x(m)满足方程
(8-2x)(5-2x)=18.
可以把它化为2x2-13x+11=0.
由此可知:只要求出2x2-13x+11=0
的解,那么地毯花边的宽度即可求出.
如何求呢?
[生]可以选取一些值代入方程,看能否有使得方程左、右两边的值都相等的数值.如果有,则可求出花边的宽度.
[师]噢,那如何选取数值呢?大家来分组讨论讨论.(出示投影片§2.1.2 B)
1.x可能小于0吗?说说你的理由.
2.x可能大于4吗?可能大于2.5吗?说说你的理由,并与同伴进行交流.
3.x的值应选在什么范围之内?
4.完成下表:
x00.511.522.5
2x2-13x+11
5.你知道地毯花边的宽x(m)是多少吗? 还有其他求解方法吗?与同伴进行交流.
[生甲]因为x表示地毯的宽度,所以不可能取小于0的数.
[生乙]x既不可能大于4,也不可能大于2.5.因为如果x大于4,那么地毯的长度8-
2x就小于0,如果x大于2.5时,那么地毯的宽度同样是小于0.
[生丙]x的值应选在0和2.5之间.
[生丁]表中的值为:
当x=0时,2x2-13x+11=11(依次类推),即
x00.511.522.5
2x2-13x+11114.750-4-7-9
[生戊]由上面的讨论可以知道:当x=1时,2x2-13x+11=0,正好与右边的值相等.所以由此可知:x=1是方程2x2-13x+11=0的解,从而得知;地毯花边的宽为1 m.
[生己]我没有把原方程化为一般形式,而是把18分解为6× 8.然后凑数:8-2x=6,5-2x=3,两个一元一次方程的解正好为同解,x=1.
这样,地毯花边的宽度就可以求出来,即它为1 m.
[师]同学们讨论得真棒,接下来大家来看上节课的另一实际 请点击下载Word版完整教案:北师大版九年级数学上册《花边有多宽》教案二教案《北师大版九年级数学上册《花边有多宽》教案二》来自www.qihang56.com网!/JiaoAn/ShuXueJA9/75881.html
教学过程(本文来自优秀教育资源网淘.教.案.网)
I.创设现实情景,引入新课
[师]前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,大家来回忆一下.
[生甲]把只含有一个未知数并且都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的整式方程叫做一元二次方程.
[生乙]一元二次方程的一般形式是ax2+bx+c=O(a、b、c为常数,a≠0).
其中ax2称为二次项,bx称为一次项,c为常数项;a和b分别称为二次项系数和一次项系数.
[师]很好,现在我们来看上节课的问题:花边有多宽.(出示投影片§ 2.1.2 A)
一块四周镶有宽度相等的花边的地毯,如下图所示,它的长为8 m,宽为5 m,如果地毯中央长方形图案的面积为18 m2,那么花边有多宽?
[师生共析]我们设花边的宽度为x,m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m.根据题意,就得到方程
(8-2x)(5-2x)=18.
[师]大家想一下:能求出这个方程中的未知数x吗?
……
[师]这节课我们继续来探讨“花边有多宽”.
Ⅱ.讲授新课
[师]要求地毯的花边有多宽,由前面我们知道:地毯花边的宽x(m)满足方程
(8-2x)(5-2x)=18.
可以把它化为2x2-13x+11=0.
由此可知:只要求出2x2-13x+11=0
的解,那么地毯花边的宽度即可求出.
如何求呢?
[生]可以选取一些值代入方程,看能否有使得方程左、右两边的值都相等的数值.如果有,则可求出花边的宽度.
[师]噢,那如何选取数值呢?大家来分组讨论讨论.(出示投影片§2.1.2 B)
1.x可能小于0吗?说说你的理由.
2.x可能大于4吗?可能大于2.5吗?说说你的理由,并与同伴进行交流.
3.x的值应选在什么范围之内?
4.完成下表:
x00.511.522.5
2x2-13x+11
5.你知道地毯花边的宽x(m)是多少吗? 还有其他求解方法吗?与同伴进行交流.
[生甲]因为x表示地毯的宽度,所以不可能取小于0的数.
[生乙]x既不可能大于4,也不可能大于2.5.因为如果x大于4,那么地毯的长度8-
2x就小于0,如果x大于2.5时,那么地毯的宽度同样是小于0.
[生丙]x的值应选在0和2.5之间.
[生丁]表中的值为:
当x=0时,2x2-13x+11=11(依次类推),即
x00.511.522.5
2x2-13x+11114.750-4-7-9
[生戊]由上面的讨论可以知道:当x=1时,2x2-13x+11=0,正好与右边的值相等.所以由此可知:x=1是方程2x2-13x+11=0的解,从而得知;地毯花边的宽为1 m.
[生己]我没有把原方程化为一般形式,而是把18分解为6× 8.然后凑数:8-2x=6,5-2x=3,两个一元一次方程的解正好为同解,x=1.
这样,地毯花边的宽度就可以求出来,即它为1 m.
[师]同学们讨论得真棒,接下来大家来看上节课的另一实际 请点击下载Word版完整教案:北师大版九年级数学上册《花边有多宽》教案二教案《北师大版九年级数学上册《花边有多宽》教案二》来自www.qihang56.com网!/JiaoAn/ShuXueJA9/75881.html
相关热词搜索:
分享到:
收藏
评论排行
初三数学教案 热门排行
- · 九年级数学下册《解直角三角形及其应用
- · 新人教版九年级数学下册《27.3 位似(
- · 人教版九年级数学下册《锐角三角函数(
- · 人教版九年级数学下册《解直解三角形小
- · 人教版九年级数学上册《24.1 圆(第3课
- · 人教版九年级数学上册《24.2与圆的位置
- · 人教版九年级数学上册《24.2.1点与圆的
- · 人教版九年级数学上册《25.2列举法求概
- · 人教版九年级数学下册《锐角三角函数》
- · 人教版九年级数学下册《27.2.1相似三角
- · 人教版九年级数学下册《二次函数》第一
- · 人教版九年级数学下册《26.4二次函数复
- · 北师大版九年级数学上册《4.3灯光与影
- · 北师大版九年级数学上册《2.2.3配方法
- · 北师大版九年级数学上册《2.1花边有多
- · 北师大版九年级数学上册《5.2.1反比例
- · 人教版九年级数学上册《用列举法求概率
- · 人教版九年级数学下册《27.2.1相似三角
- · 人教版九年级数学《27.2.3相似三角形的
- · 九年级数学中考复习《二次函数》教案1
- · 人教版九年级数学下册《30°、45°、6
- · 人教版九年级数学《相似三角形复习(1)
- · 人教版九年级数学第二十七章《相似》复
- · 人教版九年级数学《相似多边形的性质》